

Multi Functional Performance of Wood Fibre Insulation

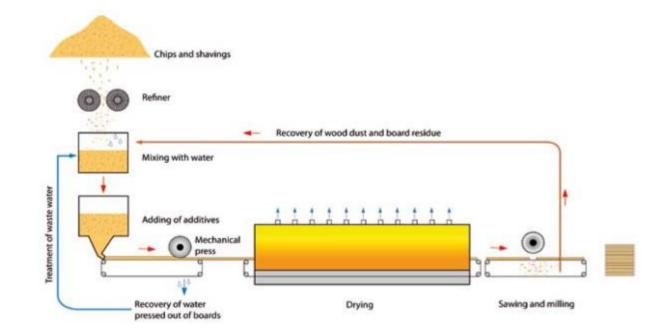
Why should we be building with wood?

"When someone invents a material that is: Renewable, Reusable, Organic, Biodegradable, Whose production cleans the air and water, sequesters carbon, creates oxygen, provides habitat for us and other species Gives us a material that is strong, light, diverse, Versatile, beautiful, ubiquitous and inexpensive... "Then I'll invest in it, until then, I'll use wood wherever I can! If not wood, then what?" Peter Moonen Canadian Wood Council

- Wood Fibre Manufacture and Product Types
- Performance Characteristics
- Applications (Timber Frame, CLT, Solid Masonry Internal Wall Insulation)
- Costs
- Summary

WHAT IS WOODFIBRE INSULATION?

- Made with post-industrial recycled wood chips (spruce and pine)
- Rigid Boards (110-240kg/m3 density), flexible batts (50kg/m3 density) and loose fill (25-40kg/m3 density)
- Woodfibre boards by "wet" & "dry" method
- Excellent insulation material for internal or external applications
- All products are Certified according to EN13171 and have EPD's
- Can be applied almost anywhere provided it is above ground level

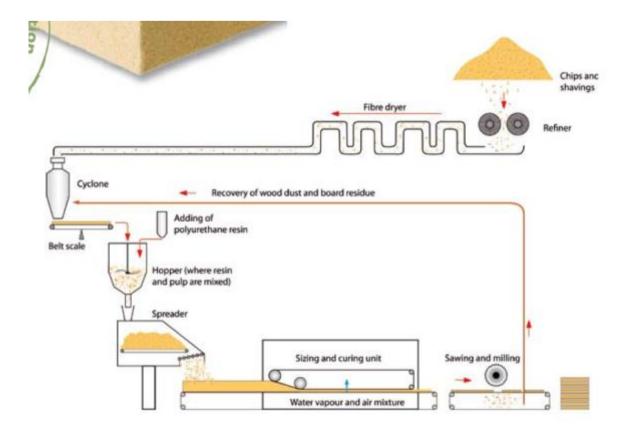

The Wet Production Process

Thickness: 4 mm – 25 mm

Glued layers: > 20 mm boards

Density: 160 – 270 kg/m³

Diffusion open (μ): 5



The Dry Production

Process

- ✓ homogeneous
- ✓ Insulation thicknesses 20 240 mm
- ✓ Woodfibre-blow in insulation
- ✓ less tolerances
- ✓ Higher stability with lower densities (110 - 200 kg/m³)
- ✓ More diffusion open with $\mu = 3$
- ✓ 40 % less Energy and CO₂consumption
- ✓ Less additives higher percentage wood component 94 – 96 %

EXAMPLE WOOD FIBRE INSULATION PRODUCTS

GUTEX Multiplex-top

GUTEX Thermoflex

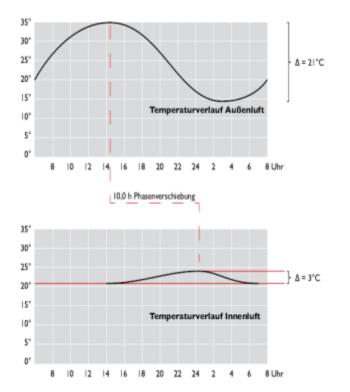
GUTEX Thermofibre

WHY WOODFIBRE INSULATION

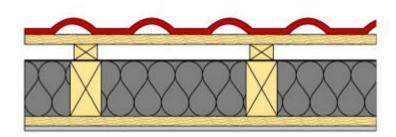
The Benefits:

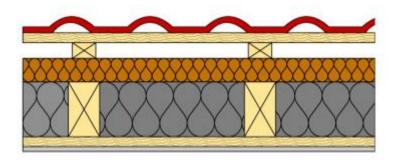
- Optimum combination of Thermal insulation in Winter & Summer
- Effective acoustic properties
- Speed of application
- Very Robust
- Extremely diffusion open, reducing condensation risk
- Consistent quality and reliable application
- Inherently windtight material
- Recyclable & Optimum Sustainability

Wood Fibre Benefits: Insulation in Winter


- Lambda Value range 0.036 0.045W/mK
- Less Thermal Bridges
- Wind Tight Construction
- Air Tight Construction
 - High Air Flow Resistivity (kPa*s/m² = 100 for Gutex Multiplex Top)
- U Values <0.10W/m2K for Walls, Roof and floors

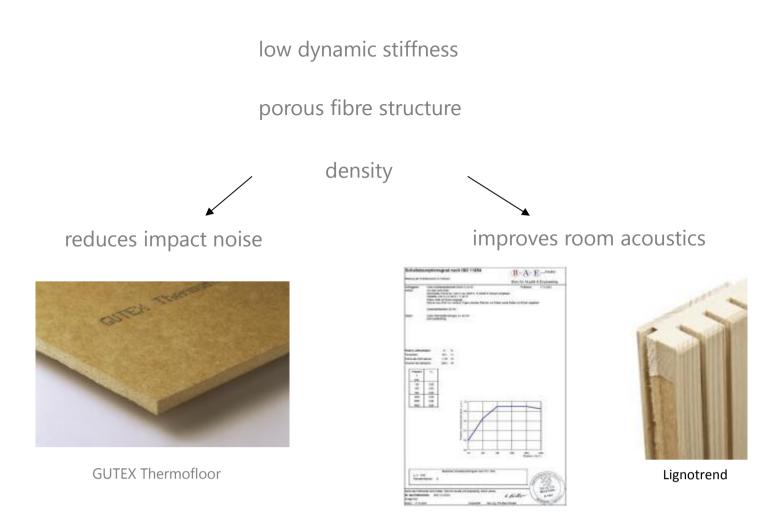
Wood Fibre Benefits: Insulation in Summer


- High Specific Heat Capacity (2100 J/kgK)
- High Density (up to 180kg/m3)
- Combination gives a high level of protection against summer overheating
- Heat from the sun takes longer to enter into the building (Decrement Delay)
- Temperature increase reduced (Amplitude Damping)

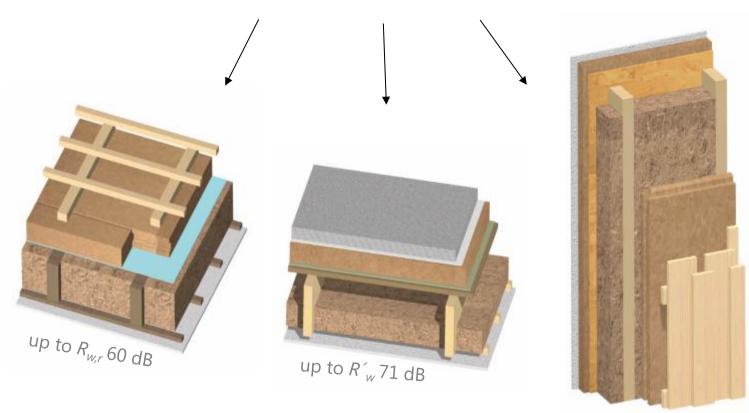


Phase shift =10,0 h Amplitude damping (1/TAR) = $21^{\circ}C / 3^{\circ}C = 7$

Additional insulation layer for roofing: U value and Decrement Delay boost



		GUTE	GUTEX Multiplex-top			GUTEX Ultratherm					
			thickness (mm)								
	sarking membrane	22	28	35	50	60	80	100	120	140	160
U-value (W/m²K)	0,35	0,29	0,28	0,27	0,24	0,23	0,21	0,19	0,18	0,16	0,15
Phaseshift (h)	6,9 h (24%)	8,0 (20%)	8,4 (19%)	8,9 (17%)	10,0 (14%)	10,7 (12%)	l 2,2 (8%)	I 3,6 (6%)	 4,9 (4%)	16,2 (3%)	17,6 (2%)


Wood Fibre and Acoustic Insulation

Wood Fibre and Acoustic Reduction

The combination of design and material

Wood Fibre and Fire Protection

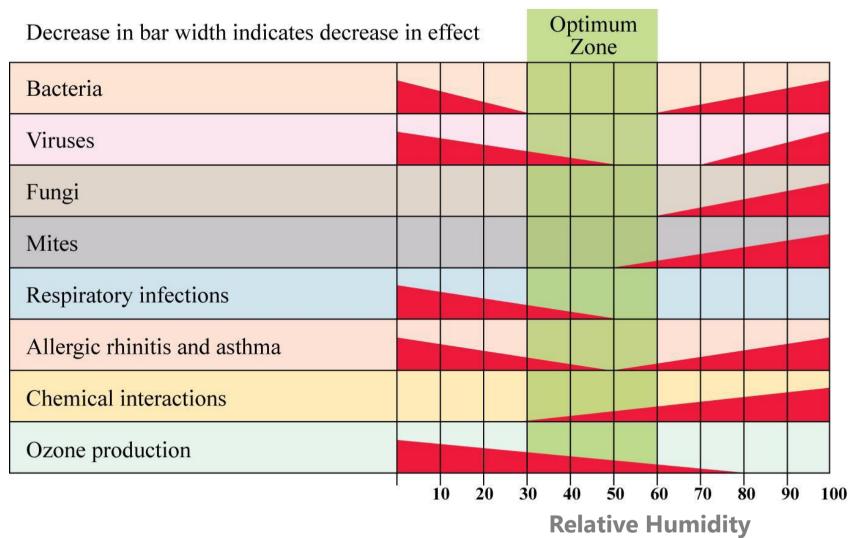
- Wood Fibre chars with no explosive burning process
- Can achieve up to REI 90 (90 minute rating EN13501-2/BS476 Part 20) using Gutex in Timber Frame Construction

	Von Außen									
	REI 30 REI 45 REI 60			EI 60	RE190					
	2 40mm GUTEX Multitherm	≥ 60mm GUTEX Multitherm	2 60mm GUTEX Thermowall N+F	≥ 60mm GUTEX Thermowali-gf	260 mm GUITEX Thermovali-gf	2 BOmm GUTEX Thermowall N+F				
		Putz			he Amierungschicht	ohne Putz				
2 15 mm Fermacell GF-Platte + 2 15 mm Fermacell GF-Platte 2 15 mm Fermacell GF-Platte +Installationsebene ohne Dämmung + 2 15 mm Fermacell GF-Platte	Ständer Voliholz ≥ 140x60 mm ⁴ , Actsab. ≤ 833mm, Gefachsämmung aus Steinwolle {Schmetzpunkt > 1000 ⁴ C, Bohdichte ≥ 40kg/m ⁴), d ≥ 140mm				Ständer Vollholz 2: 140x50 mm ⁴ , Achtab. 5:833 mm; Gefachdämmung aus Steinwolle (Schmeitzunkt > 1000°C, Rohdolte 2: 40kg/m ⁴ , d:2:140mm.	Ständer Vollholz 2 160x60 mm ¹ , Achsab. 5 625 mm, Gefachdämmung aus Steinwolle (Schmelzpunit: 2 1000°C, Rohdichte 2 40kg/m²), d 2 160 mm				
2.15 mm Fermacell GF-Platte +Installationsebene mit Dämmung*) +2.15 mm Fermacell GF-Platte					Ständer Volholt 2 160x60 mm ² , Achtab. 5 625 mm; Gefachdämmung aus Steinwolle (Schmelzpunkt 2 1000°C, Rohd. 2 40kg/m ³), d 2 160 mm					
218 mm GKF/GF +2 18 mm GKF/GF +2 15 mm OS8 3/4	Ständer Voll		Actoab. ≤ 833 mm; Gefac moflex.d ≥ 140mm,	hdámmung aus GUTEX	Ständer Voliholt 2 140x60 mm², Actuab. 5 833mm; Gefachdämmung aus Steinwolle (Schmeltpunkt >					
2.18 mm GKF/GF +2.18mm GKF/GF +Installationsebene ohne Dämmung +2.15 mm OSB 3/4	Ständer Volholz 2 140x60 mm ¹ , Achsab, 5 833mm, Gefachdämmung aus Steinwolle		1000°C, Rohdichte ≥ 40kg/m³), d ≥ 140mm. Ständer Volhols ≥ 160x60 mm², Actsab. ≤ 625 mm; Gefachdämmung aus Steinwolle	Ständer Vollholz 2 160x60 mm², Achseb. 5 625 mm; Gefachdämmung a Steinwolfe (Schmelspunkt 2 1000%; Rohdichte 2 40kg/m³); d 2 160 mm						
≥ 18 mm GKF/GF '+≥ 18 mm GKF/GF + Installationebere mit Diamnung*) + ≥ 15 mm OSB 3/4	Ständer Vollh	Thern olz ≥ 190x90 mm², A	Achtab. 5 833mm; Gefach nofibre, d 2 160 mm. chsab. 5 833 mm; Gefach r 2 45kg/m²); d 2 160 mm	dämmung aus Cellulose	(Schmeizpunkt ± 1000°C, Rohdichte : ± 40kg/m³), d ± 160 mm Stränder Voliholt2150x60 mm³, Achsab ± 625mm, Gefachdimmung aus GUTEX Thermoflex, dz 160mm	Ständer Vollholt 2 160x60mm; Achsab. 5 625mm;Gefachdämmung aus GU Thermoflex, d 2 160 mm				

Die brandschutztechnisch zulässigen Wandhöhen und maximalen Belastungen für die zu bewertenden Wankkonstruktionen und die Verbindungsmittel sind mit dem allgemeinen Prüfzeugnis P-54C-02/8-740[19] und der DIN 18181 2008-10[1] zu entrehmen. *) GUTEX Thermoinstal, GUTEX Thermoflex, mineralische Dämmstoffe mit einem Schmelspunkt 2 1000¹C

) oder 2 12mm OS8 3/4 oder 2 13mm Holzwerkstoffplatte *) Wandaußenseite ist immer verputzt auszuführen

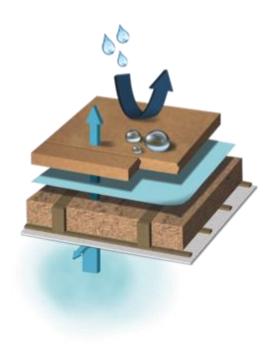
Wood Fibre and Fire Protection


Fire Toxicity is the biggest cause of death and injury in fires

It has been evidenced* that products based on polystyrene, Polyisocyanurate, amongst others, have far greater yields of toxicity, up to six times, when compared to the combustion of natural materials such as wood

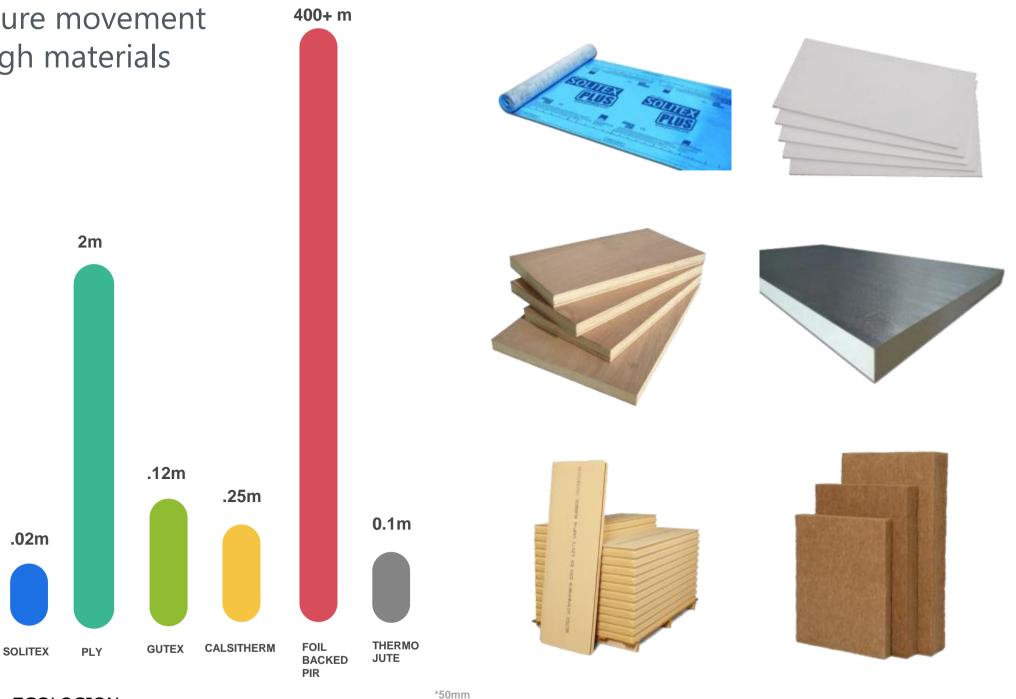
* University of Central Lancashire

Wood Fibre and Health: Contribution Towards Indoor Humidity Control



Wood Fibre and Health: Mould Resistance

- Moisture Vapour Diffusion Open μ-value = 3
- Absorbs and releases 15% of its own weight of water
- Moisture vapour diffusion open and wind tight
- Design flexibility don't have to use high vapour resistant VCL membranes



MOISTURE VAPOUR DIFFUSION RESISTANCE

Moisture movement through materials

ECOLOGICAL BUILDING SYSTEMS

Insulation

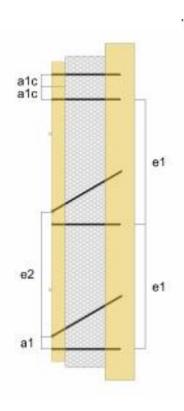
WOOD FIBRE DURABILITY

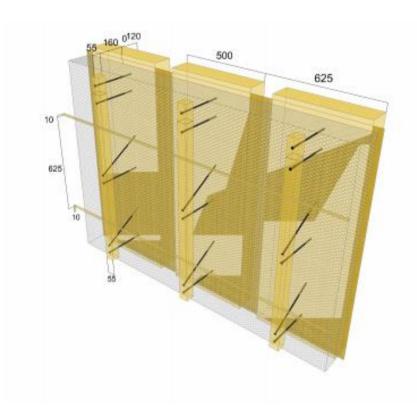
- Hail- and rainproof
- Windtight
- Suitable as temporary roof covering
- Diffusion open

Roof Valleys and Ridges

WOOD FIBRE DURABILITY

Ridge




WOOD FIBRE BUILDABILITY

Fast Installation Timber Frame

Thermally broken temporary fixings Then Shear and Suction screws

WOOD FIBRE BUILDABILITY

Fast Installation Internal Solid Masonry Wall Insulation

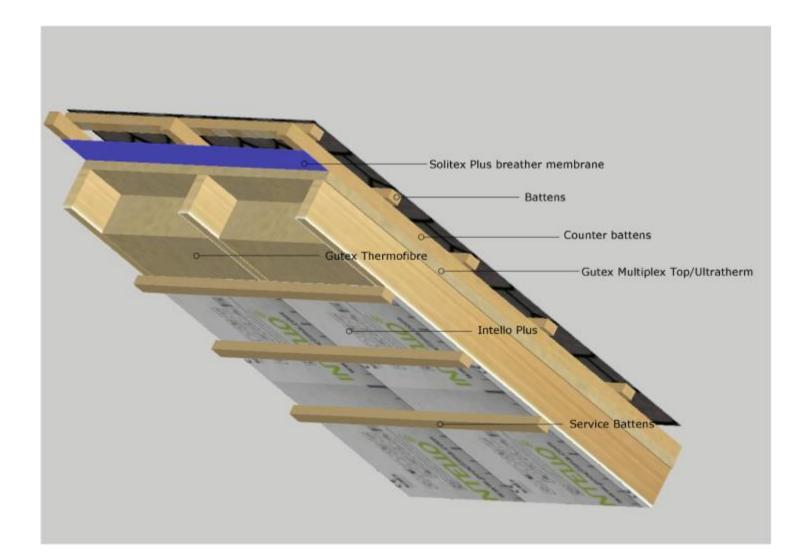
Lime Mortar Adhesive Tile onto the Wall

WOOD FIBRE SUSTAINABILITY CARBON AND BUILDINGS

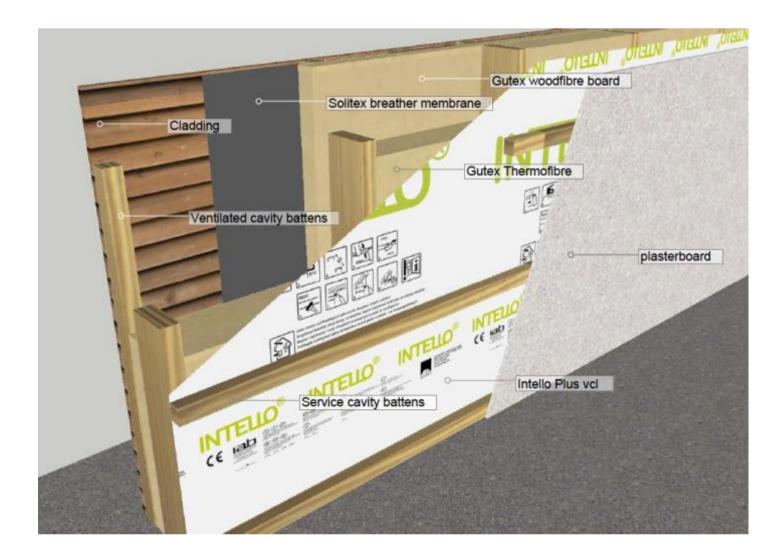
Life Cycle of buildings accounts for 40% of total global energy (ref: Dixit et al. 2010)

In Europe construction accounts for 4.8 tonnes of mineral extraction per person per year (ref: Bribian, I.Z.Capilla, A.V. & Uson, A.A, 2008)

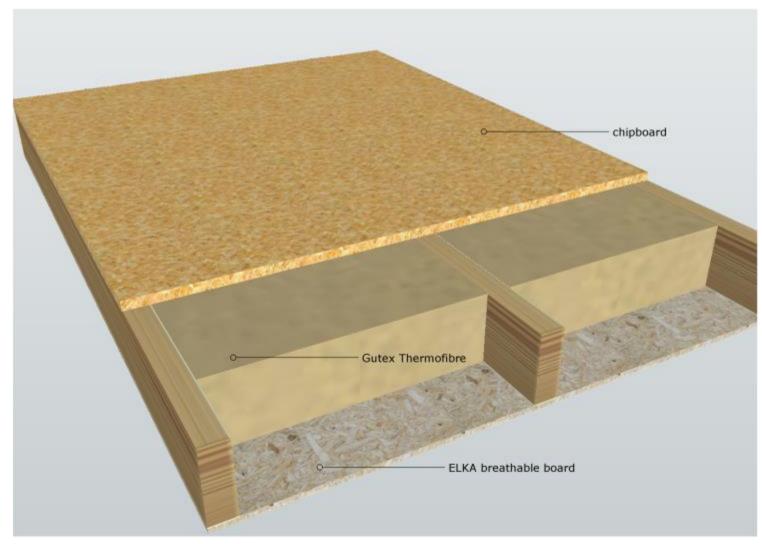
Non-renewable materials sourced from finite resource and extracted once


1 kg of dried timber can sequester 1.8kgCO₂eq/kg stored as Carbon (Ref: Berge, B., 2009)

CARBON STORAGE IN BUILDINGS


REF: http://www.woodforgood.com/sustainability/build-with-carbon

WOOD FIBRE IN ROOF STRUCTURES



WOOD FIBRE IN WALL STRUCTURES

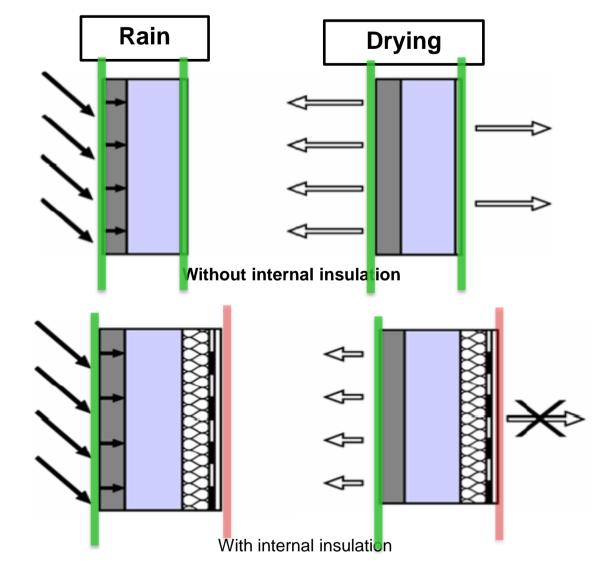
WOOD FIBRE IN FLOORS

WOOD FIBRE IN CLT (Cross Laminated Timber)

~ 8 million difficult to treat solid masonry wall residential properties in the UK

Main issue with Insulation Upgrades is moisture, condensation and mould

Rot of half-timbered structure probably caused by low-permeance coating not providing sufficient drying potential for given exposure conditions

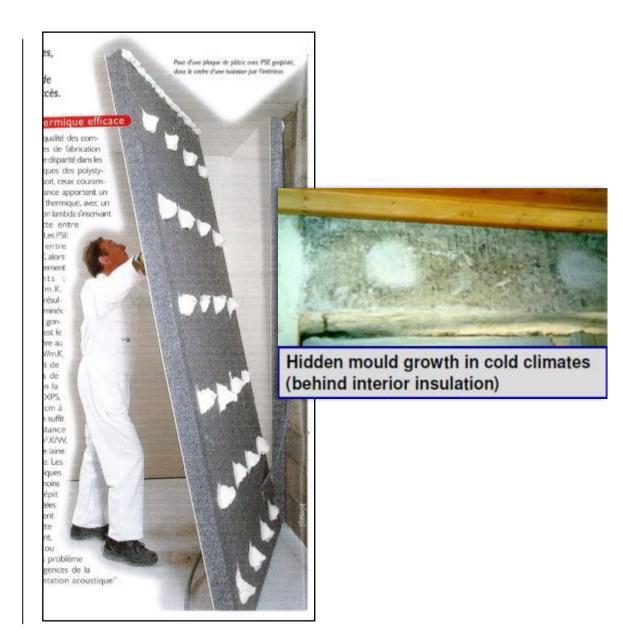


Moisture and its impact on Buildings

Freeze/Thaw Spalling

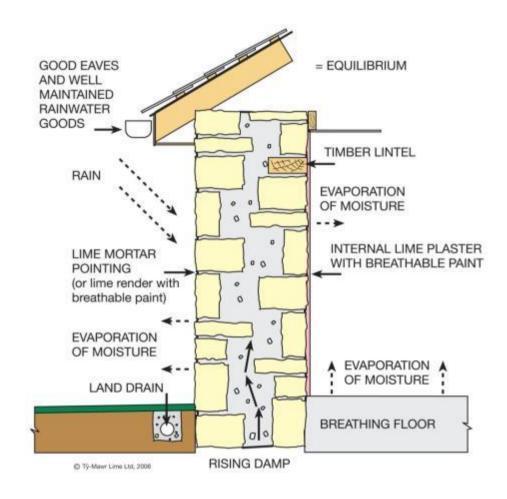
Higher moisture in the wall on the weather side

> Importance of breathable materials

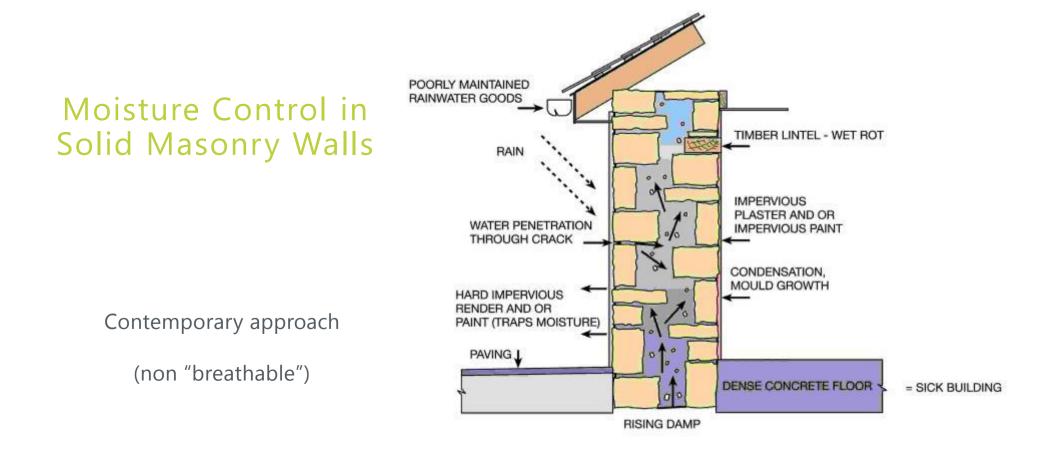

Ref: Hartwig M. Künzel Fraunhofer IBP 2006

COMMON ERROR: DOT and DAB PIR BOARDS ONTP THE WALL

Minimising Mould Risks Avoid Stagnant Air Gaps!



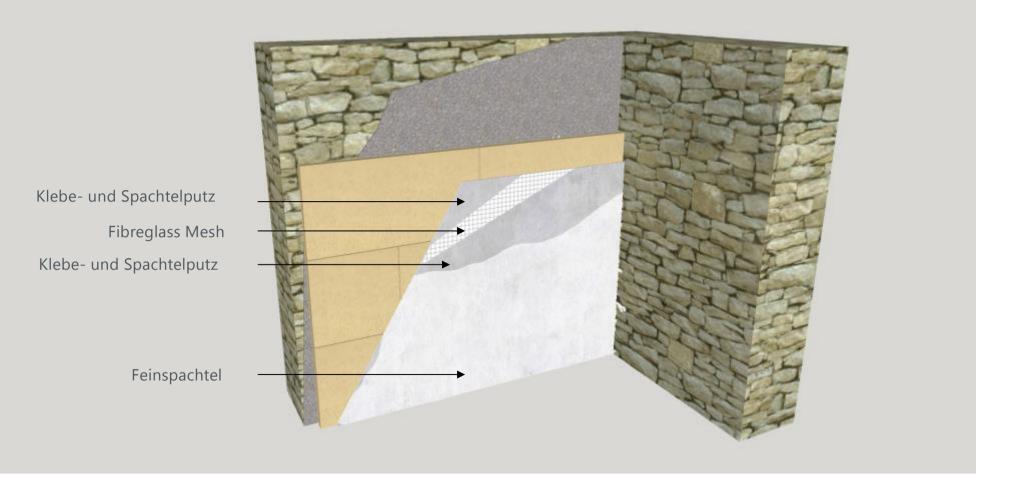
Moisture Control in Solid Masonry Walls


Traditional approach

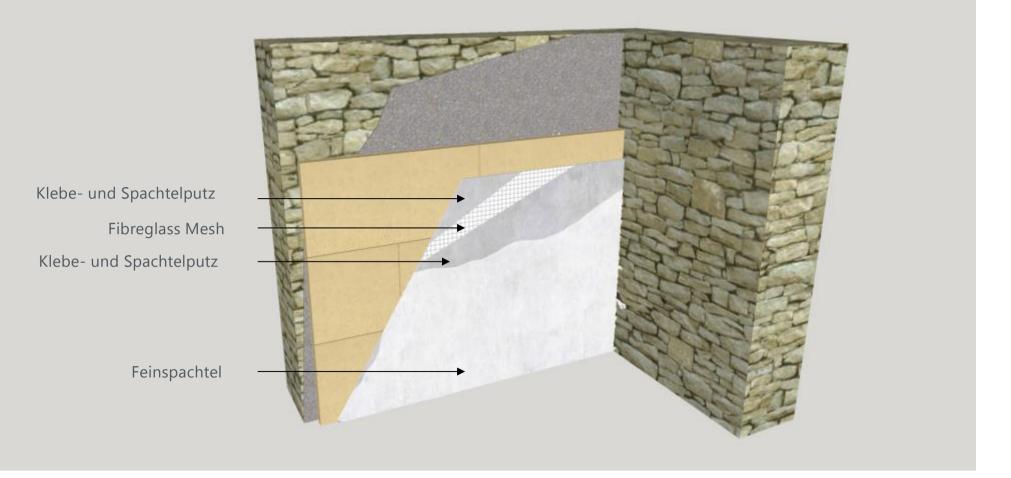
("breathable")

Ref: Ty Mawr Lime

Ref: Ty Mawr Lime



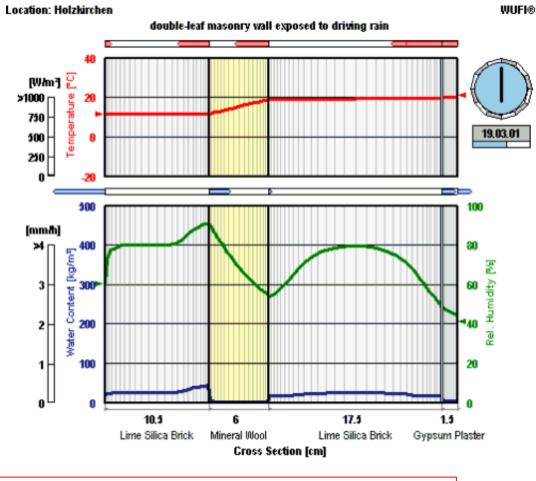
Woodfibre insulation is FULLY BONDED to the wall.



Finishing layers (Klebe-Spachtelputz / Feispachtel)

Moisture Vapour Diffusion Open Finishing Layers

Cost: 40mm ~£30/m2; 100mm ~£50/m2



AVOIDING THE RISKS

Hygrothermal Modelling

Computer- assisted simulation program for heat and humidity transports (dynamic) WUFI

- Real climatic data
- Inside and outside temperature
- Inside and outside humidity
- Light absorption
- Moisture storage capability
- Capillary action (Data of one reference year at intervals of 1 hour)

Current EN 15026: 2007 provides higher accuracy compared with EN 13788:2011 in BS 5250.

SUMMARY

- Compatible materials optimise vapour permeability of construction
- Outstanding thermal resistance up to Passivhaus/nZEB
- Fast installation makes building weathertight
- Carbon sequestering, compostable and more ecological
- Outstanding acoustic values
- Excellent heat protection (Low thermal diffusivity
- Increased protection against mould
- Cost effective!

www.ecologicalbuildingsystems.com info@ecologicalbuildingsystems.com

01228 711511